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An analytic investigation of the problem of the non-linear free flexural vibrations of a circular ring taking 
account of the coupled’ modes is presented. A system of amplitude-frequency modulation equations is 
obtained by the method of many scales. The integral of this system enables one to construct an 
“amplitudephase pattern” which characterizes the possible dynamic modes in the case of arbitrary initial 
conditions. It is shown that an energy threshold exists and, when this is exceeded, the appearance of a 
travelling wave and pronounced amplitudefrequency modulation are possible. The threshold value of the 
energy depends on the “detuning” of the frequencies of the coupled modes due to the presence of initial 
imperfections. A general solution of the problem is obtained in elliptic Jacobi functions. 

In the case of flexural vibrations of circular rings, shells of revolution and disks, the directly excited 
fundamental modes may be accompanied by the appearance of “coupled” modes (which are geo- 
metrically similar but shifted in a circumferential direction by an angle cp = xL9z) where II is the 
number of circumferential waves). This leads to the appearance of travelling waves [l-3]. The 
mathematical model of vibrations constructed in [4] has enabled the non-linear nature of these 
phenomena to be established. It has been shown that the free vibrations of rings and shells are 
amplitude-frequency modulated vibrations with periodic energy exchange between coupled modes 
[2]. However, there has been no complete analytic investigation of the problem up to the present time. 
The interesting analytic model of the non-linear interaction of vibrations in a ring [S] describes a 
somewhat different phenomenon, that is energy exchange between radial extensionampression 
modes and flexural modes (the interaction of three modes). Radii extension-compression modes were 
not excited in the experiments in [l, 21, and an explanation of the results in these papers need8 to be 
sought within the framework of an analytic model which describes the interaction of coupled modes. 

1. INITIAL EQUATIONS. SYSTEM OF AMPLITUDE-FREQUENCY 
MODULATION EQUATIONS AND ITS INTEGRAL 

Consider the free flexural vibrations of a ring of radius R in its plane (with the axis of symmetry of 
the cross-section lying in this plane). We take the radial flexure in the form (a positive flexure is in the 
direction of the outward normal) 

w - A cos ncp + f2 sin ncp + f. (1.1) 

where cp = y/R is an angular coordinate. The componentfa takes account of the radial displacement of 
the axial line of the ring as a consequence of flexure and is determined from the condition that the 
mean membrane stress (when there is no axially symmetric extension-compression strain) is equal to 
zero. The axial strain e and the change of curvature x are defined by the expressions (see [6], for 
example) 
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(u is the tangential displacement). It follows from the condition ,,” ER dcp = 0, which is satisfied exactly 
when there is no axially symmetric strain, and when (1.1) and the periodicity of 2) with respect to cp are 
taken into account thatfe has a quadratic order 

The tangential displacement u is determined from the condition w f ~,e = 0 which follows from the 
smallness of E: and (rv,e - u)2/(~2) compared with the linear terms in the expression for E (the approxi- 
mation in the determination of 2) is justified by the smallness of the contribution of u in the following 
solution and, when all terms in u are neglected, the error is of the order of l/n*) 

u-(-fisinncp+f2cosncp)ln 

We then obtain 

fo -- ‘;,I)’ vi2 + fi’> 

(the factor tt2 is given in fl] and other papers instead of n2 - 1). 
From Lagrange’s equations, on defining the potential and kinetic energy by 

. 2 __1)2 
V - T i x*Rdq - ““‘:“R3 (Ii2 +.I$*> 

G2 +G2)Rdcp 

U-2) 

W 

(p, A and i are the density, the area and moment of inertia of the cross-section; differentiation with 
respect to t is denoted by a dot), we obtain a system of equations in fr and f2 containing cubic non- 
linearities 

. . 
f~+o~i;+2Kf~(fi~+~2+f2j;i+f;2)-0, k-l,2 (1.4) 

a+l*= E&n* - 1>*n* 

pAR4(n2 + 1) * 
& _ (a2 - II4 

2F14R2 I 

For generality in the analysis, the value of 02 is assumed not to be the same as the value of o (unlike 
in [4]) although it is close in magnitude to o. When there are initial imperfections, the eigenfrequency 
spectrum of the coupled modes decomposes [7], and it is therefore assumed that 

where E is a small parameter and cr is the frequency “detuning” parameter. We note that imperfections 
also lead to the appearance of a linear relation between coupled modes [2]. However, under 
conventional experimental conditions (where the position of the nodes is not fixed) fundamental 
vibrational modes are excited for which there is no linear relation by virtue of their o~ogonali~ (that 
is, the arrangement of the nodes and anti-nodes is determined by the modes with the extremum values 
of the characteristic frequencies). 

The system of equations (1.4) is solved by the method of many scales [8]. On introducing “fast” and 
“slow” times To = C, T, = tiT0 (s = 1,2, . . . ) and seeking the solution of this system in the form of an 
expansion 
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fk = efc, +e3fk3+..., k - 1,2 (l-6) 

we obtain, after appl~g the standard procedure, the equations for two appro~mations 

D&, +o?fkl - 0, k - 1.2 

D;fk3 + w*fkj + <=A_,4 + q*)f,, + 

(l-7) 

+2~f~,If,,D& +Wof,,)* +f2,Difz, +fI)Ofd*l+‘&fk~ -0 (1.8) 

where Do = i&3To, Ds = aJilT and 8, is the Kronecker delta. 
We will write the solution of system (1.7) in the form (cc is a complex conjugate quantity) 

fkl =Ak(T2)PTo + cc, k = 1,2. (l-9) 

Su~ti~t~g (1.9) into (1.Q we obtain from the ~ndition that there are no secular terms (differen- 
tiation with respect to the slow time Tz is denoted by a prime) 

-2ioA; + 41co~(A~ t Ai )& - 6kpA2 = 0, 

On changing to the exponential form for the complex amplitudes 

Ak 
1 

- -dke 
ie, 

2 

k = 1,2 (1.10) 

(1.11) 

and, on separating the real and imaginary parts in (MO), we obtain a system of equations which 
determines the mutation of the amplitudes and phases of the coupled modes 

(a;)# t (-l)‘~oa~a~ sin2y - 0, k - 1,2 (1.12) 

2e; t mgu; + a; cos2y) - 0 

28; tKU&COS2y tU$dW-0 (7 ‘62-8,) 

From the frrst two equations of (1.12), we obtain the energy integral 

2 
a, ++e (1.13) 

(the arbitrary constant e is proportional to the energy of the system). 
We now introduce the variable 5 by the relation 5 = a&O =Z 5 < 1). Then, u$ = e(1 - 5) and, from 

(1.12), we obtain the following system of equations in 5 and y (the second equation is obtained by 
subtracting the penultimate equation of (1.12) from the last equation of (1.12)) 

5’ - rco&( I - 5) sin 2y 

2Y’ - -Icwe( 1 - 25)( I- cos 2y ) t CJ f 0 (1.14) 

On dividing the first equation of (1.14) by the second, we obtain au equation in complete differ- 
entials which has the integral 

g(1--5)(1-cos2y)-U*g= c, U* -o/(eo2K) (1.15) 

On the other hand, on eliminating y from the first equation of (1.14) and the integral (US), we 
obtain an equation which determines the dependence of E, on the slow time T2 

(t?oIc)-*(~‘)2 - (a2 + C)[25(1 - S) - (o’5 + C)l (1.16) 
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2. THE AMPLITUDE-PHASE PATTERN OF THE SYSTEM. STEADY 
STATES. STABILITY. THE DEPENDENCE OF THE MODE OF 

VIBRATION ON THE ENERGY AND THE DETUNING OF THE 
FREQUENCIES OF COUPLED MODES 

We will first consider what conclusions regarding the behaviour of a ring can be drawn on the basis 
of the integral (1.15). By virtue of the periodic@ with respect to y, it is possible to confine oneself in 
the analysis to a treatment of the rectangle 0 s 5 G 1,O G y d IT in the (5, y)-plane. The integral curves 
(1.15) in this rectangle constitute the “amplitude-phase pattern” (APP) of the system, which provides 
a clear representation of the modes of vibration in the case of arbitrary initial conditions and their 
stabilities. The topography of an APP is determined by the number of stationary points (1.14) (points 
of the extrema C (1.15)) which correspond to stationary, that is, single-frequency, vibrational condi- 
tions. The stationary points are defined by the system of equations 

Ul-Qsin2y -0, (l-2Q(l-cos2y)-a’-0 (2.1) 

which has the following solutions 

(a)E-0, y -y~;(b)S-1, Y -Y: 

(2.2) 
YZ =(~)(-l)Sarccos(l*a*)+sJc, s-0,1; (C)+&a*/4, y =3c/2 

These stationary points exist when the following conditions are respectively satisfied 

(a) 0~ u* d 2, (b)-2 G u* < 0, (c) I u’ls 2 (2.3) 

Elementary analysis shows that the points (0, y;) and (1, y:) (S = 1,2), to which vibrations of only 
one each of the coupled modes correspond, are unstable and that the last point is unstable. Without 
loss of generality, it may be assumed that o * > 0 (otherwise, it sufkes to change the numbering of the 
coupled modes). Then, depending on the magnitude of o*, the two types of APP shown in Fig. 1 are 
possible: (a) o* =S 2, (b) o* > 2 (only half of the APP is shown by virtue of its symmetry about the line 
y = n/2). The separatrix (the dashed line), which joins the unstable stationary points and encompasses 
the stable point, separates two domains; one with a difference in the phases of the coupled modes 
which oscillates with respect to y = n/2 and the other with a monotonically varying phase difference 
(the equation of the separatrix is obtained from (1.15) with C = 0 and C = -o*, respectively). 

In the case of an ideal ring (o* = 0), there is a stable stationary point at 5 = %, y = rc / 2 and unstable 
“stationary lines” at y = 0 and y = A. The APP for this case is shown in Fig. 2 (the constant C takes 
values from 0 to l/z). The in-phase (y = 0) or out-of-phase (y = xc) vibrations of the coupled modes are 
stationary for any ratio of the amplitudes (for any c), but these vibrations are unstable. Vibrations with 
the same amplitudes of the coupled modes and with a phase difference y = 1J2 constitute the sole 
stable steady state. On substitutingfr = aa cos ot,fi = EA sin ot into (l.l), we obtain 

a* (n2 - l)* 

2Rn2 I 
(2.4) 

which corresponds to a “fast” travelling wave (with the frequency of the characteristic vibrations of the 
ring 0). All the remaining modes of vibration are amplitude-frequency modulated vibrations (they 
may be considered to be the result of the superposition of slow modulation waves on a fast travelling 
wave, and the ratio of the amplitudes of the fast and slow components depends on the closeness of the 
curve to the central point). 

The following physical explanation can be given for the stability of the travelling wave (y = 62) and 
the instability of the in-phase or out-of-phase vibrations. Let us consider the radial component of the 
vibrations in expression (1.1) which is defined by (1.2) for a certain phase difference y. Puttingfr = al 
cos wt,f2 = ~a* cos(e% + y), we obtain 
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7 

(b) a* = 4 
5 

(a) o* = 1 

Fig. 1. 

Fig. 2. 

fi2+f~-E2[u~+u;+.~cos2wt+a;cos2(wr+y)]/2 (2.5) 

The amplitude of the radial vibrations is a maximum when y = 0 and y = rc and a minimum (it is 
proportional to 1 a: - ~$1) when y = 7c/2. The travelling-wave mode for an ideal ring (aI = u2) is the 
unique mode for which there are no radial vibrations of the axial line. 

Returning to the general case of an ideal ring, we note that, in the case of the unique stable station- 
ary point (when y = x/2) al # a~, and the coupled mode with the higher characteristic frequency has 
the larger amplitude. The corresponding mode of vibration can be considered as the superposition of 
a fast wave of amplitude al and a standing wave of amplitude a2 - al (when al < a2) where the fast 
component tends to zero as o* increases. The “domain of attraction” of the stationary point, bounded 
by the separatrix, simultaneously decreases and disappears when o* = 2 (three stationary points 
merge). 

When account is taken of the relationship for cr* in (1.15), the condition o* s 2 can be written in 
the form 

f.==U/(2K"2) P-3 

Let us write this condition in terms of quantities which are independent of the arbitrarily chosen 
parameter E. Taking (1.5), (1.6), (1.9), (1.11) and (1.13) into account, we have, putting (3, (0) = 0, 
k=l,2 

E,, - fi2(0) + f;(O) a E’ =--E (Aw w2K;;2 ; -02-w) (2.7) 

This expression shows that the form of the possible modes of vibration is determined by the energy 
of the vibrations. For a given value of Am, a threshold value E* exists, and, when this value is exceeded, 
an APP of type b (Fig. lb) changes into a picture of type a (Fig. la), a pronounced interaction of the 
coupled modes appears and a travelling wave mode becomes possible (the threshold value E* tends to 
zero as do decreases). 

This result explains the experimental observations in the case of cylindrical shells [2]: a strong 
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modulation (beats) is observed when free vibrations of large amplitude (of the order of 5-10 thick- 
nesses) are excited, but the beats disappear when the amplitudes decrease (due to damping). When 
fi(0) = 0 we obtain from (2.7), taking account of (1.4) (h is the thickness of the ring or shell) 

(2.8) 

For example, for one of the shells in [2] with h/R = 3.125 x lo”, n = 4, CO = 27~ x 36.9, 0~ = 
2% x 37.8, we obtainfi(0)/h 5 7, which is in good agreement with experimental observations. 

3. DEPENDENCE OF THE AMPLITUDES AND FREQUENCIES ON TIME. THE 
GENERAL SOLUTION 

The dependence of the amplitudes of coupled modes on the slow time is defined by Eq. (1.16). By 
virtue of the positiveness of the right-hand side of (1.16) segments of the lines y = o*c + C lying 
within the domain bounded by the parabolay = 2&l - 5) (Fig. 3) correspond to solutions. In the case 
of an ideal ring (a* = 0), the inclined lines become lines parallel to the abscissa. 

We will first consider the case when o* = 0. Equation (1.16) reduces to 

(3.1) 

where ti, !& are the roots of the trinomial in the square brackets of (1.16): c2 = 1 - &, C = 2&(1- &) 
and, subject to the initial condition ((0) = 50, has the solution 

5 - x + (x - &)sin(eDT, + a,,), D = dl~wh (3.2) 

Substituting the solution obtained into the second equation of (1.14) and taking account of the 
integral (1.15), we determine the phase difference 

EL 1 arctg 

(1 - 
2&)cos(eDT2 

+ 

Y -Yo+ ao) 2. 2h -a, 1 
a, -arctg(*-2E')cosao, y. -y(C)) 

2A 

and, we then find O1 and f.12 from the last two equations of (1.12). 

(3.3) 

Fig. 3. 
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For example, we obtain 

8, =e,, -7 * 
{ 

,tg$Ne4 +a0)/21-(1--2E,) 
2A -a2 

1 

(3.4) 

a2 _ wctg @(a0 ’ 2) - Cl- R, 1 
212 9 %o -e,(o) 

On calculating al = d(&), a2 = d(e(l - 5)) and changing to real time t and the energy parameter 
E. = &2e which is independent of E, we obtain, using (1.4) 

fi (t) = 1EalM 4 <K -5, )sin(DE,r + a)lP cos(or + 0,) (3.5) 

where 8i is defined by (3.4) when account is taken of the equality eT2 = Ed. A similar expression can 
also be written in the case off2(t). 

It can be seen from (3.5) and the expression for K (1.4) that the modulation period is equal to 

Top 87cn4 

(n2 - 1)4 EoO (3.6) 

The period depends on energy of the vibrations and the initial ratio of the amplitudes. In the case 
of integral curves which approximate to the lines y = 0 and y = X, Zc tends to infinity while, when 
approaching the stationary point (5i + l/z, y + 7r/2) it tends to the minimum value pm,. 

We will now consider the general case when o* # 0. As previously, we will denote by & and g2 the 
roots of the polynomial on the right-hand side of (1.16) lying in the interval (0, 1) (there can be only 
two of them). The third root 5s when CT* < 0 lies to the right of this interval and, when cr* > 0, to the 
left so that, when 0 s 5 s 1, we have o*(t - 5s) > 0. Equation (1.16) then reduces to the following 
(the initial value of 5 is assumed to be equal to the maximum value 52, for simplicity) 

Assuming that o* > 0 and, correspondingly, that 5s < 0, by making the substitution 

5 -g2 -(& -E1)sin2V 

we can reduce the integral to an elliptic integral of the first kind and write the solution in terms of 
elliptic Jacobi functions 

5-~2-(52-~l)sn2(~,~), zaT em7 -E3’1”T2, q= [& (3.7) 

For the amplitudes of the vibrations, we obtain 

a, -{e[E2 -(t2 -El)sn2(z.rl)l)K9 q -(e-of)’ 

The modulation period is expressed in terms of a complete elliptic integral of the first kind 

To - 2[/?o~o~o(~2 -g3)]-h(q) 

This period depends on the initial conditions and, as calculations show, is two to three orders of 
magnitude greater than the period of the characteristic vibrations, which agrees with experimental 
observations [2]. 
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